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1 Introduction

My dissertation research focuses on the construction, implementation and study of efficient parallel matrix-free
Navier Stokes preconditioners and solvers that combine ideas and techniques from the Spectral Element and
Finite Element communities. The Navier Stokes Equations govern the dynamics of many common fluids, such
as water, oil, and blood. Numerical simulation of these equations allows us to better understand the dynamics of
fluids for vast ranges of length and time scales. The construction of efficient and scalable parallel algorithms is
paramount to being able to utilize new and upcoming generations of supercomputers to simulate complex flows.
The efficiency of our method is centered on two main ideas, the first is the use of an accurate high order matrix-
free discretization to construct accurate discrete solutions while minimizing memory requirements; the second
is the use of fast iterative solvers, via effective preconditioners that take into account parallel architecture and
efficient cache use to improve processor performance.

2 Spectral Element Discretization

The spectral element method is a Galerkin method based on the method of weighed residuals, in which a weak
form integral equation is solved. When multiple elements are used, the integral equation is broken up into a
summation of the integrals on each element. The element based integrals are then approximated by performing
numerical quadrature. In particular, velocities and pressure are represented by a basis of high order Legendre
polynomials. By choosing the degree of the pressure basis to be two less than the degree of the velocity ba-
sis, we form a staggered mesh that results in a stable discretization of the Navier-Stokes Equations. We use
Gauss-Legendre-Lobatto and Gauss-Legendre quadrature to integrate the velocity and pressure terms respec-
tively. The resulting system of non-linear matrix equations numerically represent the original integral equation
on each element. Inter-element coupling of these matrix equations ensures continuity along elemental bound-
aries. These inter-element couplings can be enforced by either constructing a fully coupled system of equations,
or by performing a gather-scatter operation that averages the solution along element boundaries after element-
based matrix-vector products are performed. This gather-scatter operation together with a tensor product repre-
sentation of the elemental matrices, yields a matrix-free discretization, in which only matrices associated with
one-dimensional phenomena need to be stored.

Compared to low order methods, spectral methods require about half as many degrees of freedom in each
spatial dimension to accurately resolve a flow. The trade-off for this low memory requirement is an increase in
computational cost per degree of freedom. By using the Spectral Element Method, we retain the accuracy of
spectral methods and gain the flexibililty of a matrix-free discretization to invoke cache efficient element-based
matrix-matrix calculations [8]. These element-based calculations provide improved parallelism over spectral
and low order methods via reduced global communication and small surface to volume ratios on each element.
Together, these computational efficiencies offset the added cost per degree of freedom, thus making spectral
elements a competitive choice for discretizing the Navier-Stokes equations.
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3 Incompressible Navier Stokes Equations

The Navier Stokes equations govern the flow of an incompressible fluid by enforcing the conservation of mass,
and momentum on a fluid volume. They can be written as

∂~u
∂t
−ν∇2~u+(~u·∇)~u+∇p = f , ∇ ·~u = 0 (1)

whereu represents velocity,p represents pressure,f represents body forces,t represents time andν represents
the fluid’s viscosity. Following discretization strategy discussed in section2 we discretize the spatial components
of (1) and obtain the system of nonlinear equations

[
F(u) −DT

−D 0

](
u
p

)
=

(
M f
0

)
(2)

whereF(u) is a non-symmetric, nonlinear advection-diffusion operator,D is a discrete divergence operator and
DT is a discrete gradient operator. Solving this system requires a nonlinear iteration scheme. This is done using
a combination of Picard and Newton iterations. Since Picard iteration has a large domain of convergence but
converges linearly, it is used to obtain a starting point for a Newton iteration, which has a narrower range of
convergence but converges quadratically. Inside each nonlinear iteration, the non-symmetric block system must
be solved. This is solved using an iterative scheme, namely, preconditioned Flexible GMRES [7]. In section5
we discuss the preconditioning methods used to expedite the convergence of GMRES, but first we introduce a
fast solver for tensor product based computations.

4 Fast Diagonalization Method (FDM)

The spectral element discretization enables us to write the Navier Stokes equations as sums of tensor products
on each element. This is particularly useful when performing matrix-vector products, and when solving certain
local systems of equations. The Fast Diagonalization Method (FDM) [6] allows for the inversion ofnd × nd

tensor product based matrices inO(nd+1) operations, whered represents the number of spatial dimensions andn
represents the number of quadrature points used on a single element.

Suppose a system of equations can be written as

C = A⊗B+B⊗A. (3)

Then if A is symmetric andB is symmetric positive definite, a set of eigenvalues{λi} and eigenvectors{vi} can
be found such that

VTAV = Λ, VTBV = I . (4)

This allows for one to inexpensively apply the action of the inverse ofC, via

C−1 = (V⊗V)(I ⊗Λ+Λ⊗ I)−1(VT ⊗VT), (5)

which only depends on the inverse of a diagonal matrix. We have extended the Fast Diagonalization Method
to allow for non-symmetricA if B is diagonal, which is the case in the Spectral Element Discretization of the
advection-diffusion equation with constant advection coefficient. We will exploit this in the application of our
block preconditioner as discussed in the next section.

2



5 Block Preconditioning Navier-Stokes Equations

Block Preconditioning consists of two important parts, choosing an appropriate block form to allow for the
eigenvalues of the system to be clumped in a few small intervals, and employing methods to efficiently perform
subsidiary solves while retaining a similar eigenstructure to the original problem. In [2] a block preconditioning
strategy was introduced, in which the block form looked like

P =
[

PF −DT

0 −Ps

]
. (6)

By choosing aPF that cheaply retains the spectral properties ofF(u) in (2), and aPs that cheaply mimics
the Schur complementDF(u)−1DT , one may obtain an effective preconditioner. To perform matrix-vector prod-
ucts involvingP−1

F , previous authors have used multigrid with stream-wise diffusion and splitting. Due to our
matrix-free constraint we only perform the action ofF on a vector, and so we cannot perform standard split-
ting techniques onF . However, we wish to retain the accelerated convergence of the Krylov subspace methods
obtained via splitting by instead formulatingPF using element-wise approximations ofF(u) and locally ap-
proximating the advection coefficient by a constant vector. With this local approximation, we can use the Fast
Diagonalization Method to perform element-wise solves, and combine these local approximations with a coarse
grid solution using a non-overlapping Additive Schwarz method similar to that described in [8]. The advection-
diffusion preconditioner can now be written as

P−1
F = R0F−1

0 (w)RT
0 +

M

∑
i=1

RT
i F−1

Ωi
(w)Ri . (7)

We use a similar technique for performingP−1
s , but first we approximateDF−1DT using the “Least-Squares-

Commutator” as proposed by [1]. Using this approximation, we get

P−1
s = (DM−1DT)−1(DM−1FM−1DT)(DM−1DT)−1. (8)

This inverse entails two Poisson type solves of the form(DM−1DT)−1. We also use the Fast Diagonalization
Method to perform each of these solves element-wise.

6 Contributions

The primary contributions of this research include:

• Development of fast steady Navier-Stokes equation solver

• Development of fast subsidiary solves for the Advection-Diffusion equation and Least Squares Commuta-
tor

• Creation of parallel, object-oriented software to implement these methods

• Implementation of Poisson, Advection-Diffusion, Least-Squares Commutator and Navier-Stokes solvers
and preconditioners within a matrix-free spectral element framework

• Comparison of convergence results from our method with those from preconditioning methods described
in [1], [2], [3], and [5].
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